Binding of sea anemone toxin to receptor sites associated with gating system of sodium channel in synaptic nerve endings in vitro.

نویسندگان

  • J P Vincent
  • M Balerna
  • J Barhanin
  • M Fosset
  • M Lazdunski
چکیده

Iodination of toxin II from the sea anemone Anemonia sulcata gives a labeled monoiododerivative that retains 80% of the original neurotoxicity. This derivative binds specifically to rat brain synaptosomes at 20 degrees C and pH 7.4 with a second-order rate constant of association ka = 4.6 x 10(4) M-1 sec-1 and a first-order rate constant of dissociation kd = 1.1 x 10(-2) sec-1. The binding occurs on the Na+ channel at a binding site distinct from that of other gating system toxins like batrachotoxin, veratridine, grayanotoxin, aconitine, and pyrethroids. The maximal binding capacity Bmax is 3.2 pmol/mg of protein (i.e., about two sea anemone toxin binding sites per tetrodotoxin binding site) and the Kd is 240 nM for the monoiododerivative and 150 nM for the native toxin. Corresponding binding parameters for the association of a 125I-labeled derivative of toxin II from the scorpion Androctonus australis Hector are Bmax = 0.3 pmol/mg of protein and Kd = 1 nM, whereas the Kd of the unmodified scorpion toxin is 0.6 nM. Competition experiments involving scorpion toxins, sea anemone toxins, and synaptosomes demonstrate that, although the sea anemone toxin is able to displace the scorpion toxin bound to synaptosomes, the scorpion toxin does not displace the sea anemone toxin. The sea anemone toxin but not the scorpion toxin binds to depolarized synaptosomes. Differences between binding properties of the two polypeptide toxins are analyzed in the discussion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Binding of scorpion toxin to receptor sites associated with voltage-sensitive sodium channels in synaptic nerve ending particles.

Scorpion mono[‘2sIJiodotoxin binds to a single class of receptor sites associated with voltage-sensitive sodium channels in synaptic nerve ending particles (synaptosomes) with a KD of approximately 3 11~. Scorpion toxin binding is inhibited by depolarization of the synaptosomes with K+ or gramicidin or by lysis of the synaptosomes. Scorpion toxin binding is enhanced by batrachotoxin, veratridin...

متن کامل

Tetrodotoxin-insensitive sodium channels. Ion flux studies of neurotoxin action in a clonal rat muscle cell line.

The action of neurotoxins on tetrodotoxin-insensitive sodium channels in cultured rat muscle cells has been studied by ion flux methods. The alkaloid neurotoxins batrachotoxin, veratridine, and aconitine act at a common receptor site to cause persistent activation of sodium channels. Batrachotoxin is a full agonist, while veratridine and aconitine are partial agonists activating 8% and 1% of so...

متن کامل

Structure and function of delta-atracotoxins: lethal neurotoxins targeting the voltage-gated sodium channel.

Delta-atracotoxins (delta-ACTX), isolated from the venom of Australian funnel-web spiders, are responsible for the potentially lethal envenomation syndrome seen following funnel-web spider envenomation. They are 42-residue polypeptides with four disulfides and an "inhibitor cystine-knot" motif with structural but not sequence homology to a variety of other spider and marine snail toxins. Delta-...

متن کامل

Binding of scorpion toxin to receptor sites associated with sodium channels in frog muscle. Correlation of voltage-dependent binding with activation

Purified scorpion toxin (Leiurus quinquestriatus) slows inactivation of sodium channels in frog muscle at concentrations in the range of 17-170 nM. Mono[125I]iodo scorpion toxin binds to a single class of sites in frog sartorius muscle with a dissociation constant of 14 nM and a binding capacity of 13 fmol/mg wet weight. Specific binding is inhibited more than 90% by 3 microM sea anemone toxin ...

متن کامل

APETx1 from sea anemone Anthopleura elegantissima is a gating modifier peptide toxin of the human ether-a-go-go- related potassium channel.

We studied the mechanism of action and the binding site of APETx1, a peptide toxin purified from sea anemone, on the human ether-a-go-go-related gene (hERG) channel. Similar to the effects of gating modifier toxins (hanatoxin and SGTx) on the voltage-gated potassium (Kv) 2.1 channel, APETx1 shifts the voltage-dependence of hERG activation in the positive direction and suppresses its current amp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 77 3  شماره 

صفحات  -

تاریخ انتشار 1980